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let r = ref [ ] in

r := [()];

true :: !r

Figure 1: unsound polymor-
phism and references [3]

The proposed talk describes submitted [7] (attached)
and ongoing [6] work about the interaction of computational
effects and predicative polymorphism. We have previously
presented this work at the Types 2016 conference, and we
would like to expose it to LOLA participants as well.

ML-style reference cells are known to be hard to combine
with polymorphism [11, 4, 14], where a näıve type system
is unsound (cf. Figure 1). The working solution, the value
restriction [18] and its relaxation [3], are ad-hoc and restrict the programmer unnecessarily. We
reexamine this problem in the context of algebraic effects [12] which extend the monadic account
of computational effects [10] (e.g., the state monad) with the syntactic operations involving them
(e.g., memory look-up and update). Bauer and Pretnar [2] use effect handlers, a generalisation
of exception handlers that allows to handle arbitrary user-defined algebraic effects, to structure
impure functional code, in analogy with monads [17]. The smooth integration of algebraic effects
with polymorphism is surprising as effect handlers can implement local-state-like programming
examples by manipulating continuations (k below) [13]:

(with HST handle set true;

let y = get () in

return y) false

❀
∗

return true

where: HST := handler {

return x 7→ fun 7→ return x

get( ; k) 7→ fun s 7→ k s s

set(s′; k) 7→ fun 7→ k () s′}

In this work, we extend Bauer and Pretnar’s [2] calculus for algebraic effects and handlers
with Hindley-Milner polymorphism, in a standard way, without any value restriction:

• We add local effect signatures [8] Σ as fi-
nite mappings from operations op to pairs
of value types A, B, which we denote by
(op : A → B) ∈ Σ.

• We extend types with type variables α.
• We introduce schemes ∀~α.A, where ~α de-
notes a finite set of |~α|-many type variables
ranged over by αi.

Our main result concerns the soundness of the type system w.r.t. the reduction relation ❀:

Theorem (Safety). If ⊢ c : A ! Σ holds, then either: (i) c ❀ c′ for some ⊢ c′ : A ! Σ;
(ii) c = return v for some ⊢ v : A; or (iii) c = op(v; y. c′) for some (op : Aop → Bop) ∈ Σ,
⊢ v : Aop, and y : Bop ⊢ c′ : A ! Σ. In particular, when Σ = ∅, evaluation will not get stuck
before returning a value.
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We use Leroy’s [9] benchmarks for evaluating the interaction of effects and polymorphism.
For example, if we extend the language with lists and bounded iteration, we can integrate effects
in polymorphic functions, as for any Σ:

let imp map = fun f xs 7→

with HST handle (
(

foldl
(

fun x 7→ set(f x :: get ())
)

() xs
)

; reverse(get ())

[ ] (∗ initial state ∗) in . . . (∗ imp map : ∀αβ.(α → β ! Σ) → (α list → β list ! Σ) ! ∅ ∗)

These benchmarks also highlight the limited expressiveness of effect handlers — we do not
know how to implement, using effect handlers, even Leroy’s basic benchmark, in which we return
a newly allocated reference cell. The advantage is that, when trying to express the problematic
program in Figure 1, we cannot express the first line, and the type system forbids handling the
last two lines using the same state handler, as they refer to memory cells of different types.

A deeper soundness result comes from a denotational model for algebraic effects and poly-
morphism [6]. We modify Seely’s models of impredicative polymorphism [15] by separating
the fibred category of types into a fibred embedding of a fibred category of types into a fibred
category of schemes. The universal quantifier ∀, previously right adjoint to structural weaken-
ing, is now replaced by a relative right adjoint [16, 1] along the inclusion of types in schemes.
Using this relativisation, we can construct a parametric version of Harper and Mitchell’s [5]
set-theoretic models relative to a universal set U . To add computational effects to this model,
we construct a free fibred monad T∆ and prove the following theorem, which allows us to in-
terpret the calculus of algebraic effects and handlers, establishing soundness via a denotational
model.

Theorem. If U 6= ∅, then the canonical morphism T∆′∀∆.τ → ∀∆.T∆′×∆τ is invertible.
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Abstract

We present a straightforward, sound Hindley-Milner polymorphic type system for algebraic effects

and handlers in a call-by-value calculus, which allows type variable generalisation of arbitrary com-

putations, not just values. This result is surprising. On the one hand, the soundness of unrestricted

call-by-value Hindley-Milner polymorphism is known to fail in the presence of computational effects

such as reference cells and continuations. On the other hand, many programming examples can be

recast to use effect handlers instead of these effects. Analysing the expressive power of effect handlers

with respect to state effects, we claim handlers cannot express reference cells, and show they can

simulate dynamically scoped state.

1 Introduction

The following OCaml example (Garrigue, 2004) demonstrates the problematic interaction

between Hindley-Milner polymorphism, which increases code reuse, and computational

effects, such as reference cells, in a call-by-value language:

let r = ref [] in (∗ generalise r ∶ ∀α.α list ref ∗)
r ∶= [()]; (∗ specialise α ∶= unit ∗)
true ∶∶ !r (∗ specialise α ∶= bool ∗)

A naı̈ve type inference algorithm would assign the type α list ref to the term ref [].
Unrestricted, it would assign to r the type scheme ∀α.α list ref. But doing so allows us

to instantiate r with the unit type α ∶= unit to store the singleton list with the unit value,

and then to instantiate r with the boolean type α ∶= bool. The result is a list whose second

element is the unit value, but appears to the type system as a list of booleans.

� Supported by the European Research Council grant ‘events causality and symmetry — the
next-generation semantics’, and the Engineering and Physical Sciences Research Council grant
‘quantum computing as a programming language’.

† The material is based upon work supported by the Air Force Office of Scientific Research, Air
Force Materiel Command, USAF under Award No. FA9550-14-1-0096.
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The current way to avoid this well-known unsound behaviour (Pierce, 2002; Harper

& Lillibridge, 1993; Rémy, 2015) is to enforce a value restriction: the inference algo-

rithm will generalise the type variables only in value terms that cannot be reduced fur-

ther (Wright, 1995). While this restriction can be weakened to allow some computation (Gar-

rigue, 2004), it still rules out sound pure programs:

let id = (fun f ↦ f ) (fun x ↦ x) in (∗ id is not polymorphic ∗)
id (id)

The problem only arises when all three components are present: computational effects,

polymorphism, and call-by-value. Without effects, Milner’s original calculus soundly inte-

grates call-by-value with type inference (Milner, 1978). Without polymorphism, computa-

tional effects behave predictably in call-by-value languages. Without call-by-value, Leroy

(1993) combines computational effects with polymorphism without restriction. Leroy’s

language has two constructs for sequencing: a call-by-name polymorphic let x = c1 in c2

construct in which c1 is re-executed whenever it is specialised in c2, and a call-by-value

monomorphic do x ← c1 in c2 construct in which c1 is only evaluated once, but its type

is not generalised. The situation is identical in the Haskell programming language, from

which we borrowed this notation.

Programming with algebraic effects and handlers (Bauer & Pretnar, 2015) is a new

approach to structuring functional programs with computational effects. The programmer

declares a collection of algebraic effect operations with which she structures her effectful

code. Then, separately, she defines effect handlers that implement these abstract operations.

Bauer & Pretnar’s Eff programming language is a strict (i.e., call-by-value) functional lan-

guage with Hindley-Milner polymorphism, in which all computational effects are treated as

algebraic effects that can be handled. There is a pre-defined collection of effects that receive

special treatment: runtime errors and memory accesses. If these effects are not handled by

the program, the runtime will handle them, invoking the corresponding real computational

effects. As Eff combines the three problematic components (strictness, polymorphism,

effects), it currently imposes the standard value restriction on the programmer.

In this paper, we show that if only algebraic effects and handlers are present, the lan-

guage does not need a value restriction. We present a straightforward sound Hindley-

Milner polymorphic type system for a call-by-value language that incorporates compu-

tational effects in the form of algebraic effects and their handlers. In order to simplify the

presentation, we present a type system without its associated complete inference algorithm.

Doing so decouples the algorithmic concerns of finding principal types and complexity

from the semantic concern for soundness. As first-class polymorphism typically makes

type inference undecidable (Wells, 1999), our type system uses ML-style polymorphism.

The rest of the paper is structured as follows. In Sec. 2, we give a short recap of handlers

and show how they may be used to simulate global state. Next, in Sec. 3, we give a type

and effect system and sketch the proof of its soundness. We formalized the proof in the

Twelf proof assistant (Pfenning & Schürmann, 1999), extending Bauer & Pretnar’s (2014)

existing formalization of Eff ’s core calculus. In Sec. 4 we evaluate our type system and

discuss its expressivity with respect to mutable references and dynamically scoped state.

Sec. 5 concludes.
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Syntax

v ∶∶= value

x variable

∣ true ∣ false boolean constants

∣ fun x ↦ c function

∣ h handler

h ∶∶= handler

handler {return x ↦ cr,

op1(x;k)↦ c1, . . . ,opn(x;k)↦ cn}
return clause

operation clauses

c ∶∶= computation

return v return

∣ do x ← c1 in c2 sequencing

∣ op(v;y.c) operation call

∣ if v then c1 else c2 conditional

∣ v1 v2 application

∣ with v handle c handling

Syntactic sugar

Sugar Elaboration

fresh variable binding

c1;c2 do ← c1 in c2

c1 c2 do f ← c1 in do a ← c2 in f a

if c then c1 else c2 do b ← c in if b then c1 else c2

op(cp;y.ck) do p ← cp in op(p;y.ck)
fun x1 x2 . . . xn ↦ c fun x1 ↦ fun x2 ↦ . . . fun xn ↦ c

op fun x ↦ op(x;y.return y)

Fig. 1. an idealised calculus of effect handlers

2 Handlers of algebraic effects

Algebraic effects are an approach to computational effects based on a premise that impure

behaviour arises from a set of operations such as get and set for mutable store, read and

print for interactive input and output, or raise for exceptions (Plotkin & Power, 2003).

This naturally gives rise to handlers not only of exceptions, but of any other effect, yield-

ing a novel concept that, amongst others, can capture backtracking, co-operative multi-

threading, Unix-style stream redirection, and delimited continuations (Plotkin & Pretnar,

2013; Bauer & Pretnar, 2015).

2.1 Language

We base our development on the calculus (Fig. 1) given in Pretnar’s (2015) tutorial. The

language is a variant of the fine-grained call-by-value λ -calculus of Levy et al. (2003), in

which terms are split into inert values and potentially effectful computations.
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Programmers introduce effects with the construct op(v;y.c), which calls the operation

op with the parameter v. The effect invocation may yield a value to the continuation c using

the bound variable y. Programmers define the meaning of such operation calls by enclosing

them in effect handlers. A handler specifies a return clause, used when the computation

returns a final value, and a collection of operation clauses op(x;k)↦ c, which specify how

we should execute an invocation of the operation op called with the parameter x and a

continuation k. The underlying idea is that operation calls behave as signals that propagate

outwards until they reach a handler with a matching clause.

Our handlers are deep: the additional effects in the continuation are also handled by the

current handler. Our handlers are also forwarding: unhandled operations propagate through

each handler until they are handled or reach the top level. None of these design choices is

essential to the development below, but we make them to mirror Eff ’s design choices.

We use the following syntactic sugar (Fig. 1): semicolons elaborate to binding fresh

(dummy) variables; function calls, conditionals, and operation calls are elaborated to call-

by-value evaluation order; function introduction may abstract over multiple arguments;

and bare operations without a parameter or a continuation argument elaborate to the cor-

responding generic effect (Plotkin & Power, 2003). In our examples, we further assume to

have the type unit with the sole inhabitant ().

2.2 State handlers

We represent state with an operation set, which sets the state contents to a given parameter

and returns (), and get, which takes a unit parameter and returns the state contents. For

example, here is a computation that toggles the state and returns the old value:

T
def
= if get () then

set false;return true

else

set true;return false

As mentioned above, the runtime of Eff (Bauer & Pretnar, 2015) deals with unhandled

primitive effects, but in our calculus, the behaviour of operations will be determined exclu-

sively by handlers, and the computation T gets stuck when evaluated.

A simple example of a handler that can handle a stateful computation is one that sets the

state to a fixed value, say true, and ignores all its modifications:

HC ∶= handler {get( ;k)↦ k true

set( s;k)↦ k ()
return x ↦ return x}

Whenever a get operation is called, we yield true to the continuation, whereas all set calls

are silently ignored by yielding the expected unit value () and doing nothing else. The

return clause of a handler states that the returned values are kept unmodified. When we

handle T with HC, we get back the result true, no matter how many times we call T .

A more useful handler is one that handles get and set in a way that results in the ex-

pected stateful behaviour. It uses a technique called parameter-passing (Plotkin & Pretnar,
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Semantics

c1 ❀ c
′
1

do x ← c1 in c2 ❀ do x ← c
′
1 in c2 do x ← return v in c ❀ c[v/x]

do x ← op(v;y.c1) in c2 ❀ op(v;y.do x ← c1 in c2)
(DO-OP)

if true then c1 else c2 ❀ c1 if false then c1 else c2 ❀ c2

(fun x ↦ c)v ❀ c[v/x]
For every h = handler {return x ↦ cr,op1(x;k)↦ c1, . . . ,opn(x;k)↦ cn}, define:

c ❀ c
′

with h handle c ❀ with h handle c
′ with h handle (return v)❀ cr[v/x]

with h handle opi(v;y.c)❀ ci[v/x,(fun y ↦ with h handle c)/k] (1 ≤ i ≤ n) (HANDLED-OP)

with h handle op(v;y.c)❀ op(v;y.with h handle c) (op /∈ {op1, . . . ,opn})
(UNHANDLED-OP)

Fig. 2. operational semantics

2013), where we transform the handled computation into a function that passes around a

parameter, in our case the state contents:

HST ∶= handler {get( ;k)↦ return (fun s ↦ (k s) s)
set(s

′
;k)↦ return (fun ↦ (k ()) s

′)
return x ↦ return (fun ↦ return x)}

We handle get with a function that takes the current state contents s and in the first

application, passes them as a result of get to the continuation. As our handlers are deep,

the continuation is further handled into a function, which we again need to supply with

the state contents. Since reading does not modify the state, we again pass s. We handle

set by first passing the unit result, and then applying the handled continuation to the new

state s
′

as given by the parameter of set. The return clause of HST also needs to produce

a function that depends on the given state, in particular, a function that returns the given

value regardless of the state contents.

2.3 Operational semantics

To see how exactly HST can be used to simulate state, consider the operational semantics

of the calculus, also copied verbatim from Pretnar’s (2015) tutorial. The semantics is given

in terms of the small-step relation c ❀ c
′
, defined in Fig. 2. As expected, there is no such

relation for values, as these are inert.
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The rules for conditionals and function application are standard. For the sequencing

construct, do x ← c1 in c2, we start by evaluating c1. If this returns some value v, we bind

it to x and evaluate c2. But if c1 calls an operation, we propagate the call outwards and

defer further evaluation to the continuation of the call, for example:

do x1 ← (do x2 ← op(x;y.c2) in c1) in c ❀

do x1 ← op(x;y.do x2 ← c2 in c1) in c ❀

op(x;y.do x1 ← (do x2 ← c2 in c1) in c)
In our account, we gloss over the standard issues with capture-avoiding substitution and

implicitly assume the appropriate freshness conditions. For example, in this case, that y is

fresh for c1.

To evaluate with h handle c, we start by evaluating c. If it returns a value, we continue

by evaluating the return clause of h. If c calls an operation op, there are two options. If

h has a matching clause for op, we start evaluating that, passing in the parameter and the

continuation. Recall that our handlers are deep, thus the continuation k are also handled by

the current handler, see HANDLED-OP. If h does not have a matching clause, we forward

the call outwards just like in sequencing, see UNHANDLED-OP.

Let us return to the state handler HST . If we use it on a stateful computation, no effects

occur as the handled computation returns a function waiting for an initial state. To run it,

we need to apply this function to the initial state. Let us abbreviate such an application by:

⟨c,s⟩ ∶= (with HST handle c) s

(note that we use the syntactic sugar for call-by-value function calls from Fig. 1).

Even though our calculus is pure, we can show the handler HST simulates global state in

the following way. Let
st
❀ be the usual small-step semantics for global state, i.e.:

⟨get(),s⟩ st
❀ ⟨return s,s⟩ ⟨set(s

′),s⟩ st
❀ ⟨return (),s′⟩

⟨c1,s⟩ st
❀ ⟨c′1,s′⟩

⟨do x ← c1 in c2,s⟩ st
❀ ⟨do x ← c

′
1 in c2,s

′⟩
etc.

We can prove that for each ⟨c1,s⟩ st
❀ ⟨c′1,s′⟩, we have ⟨c1,s⟩❀+ ⟨c′1,s′⟩, and therefore

effect handlers simulate the operational semantics for global state. For example:

⟨get(),s⟩❀ (with HST handle (get(();y.return y))) s

❀ (fun s
′
↦ ((fun y ↦ with HST handle (return y)) s

′) s
′) s

❀ ((fun y ↦ with HST handle (return y)) s) s

❀ (with HST handle (return s)) s

= ⟨return s,s⟩
Similarly, we can prove:

⟨set(s
′),s⟩❀+ ⟨return (),s′⟩
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Types

A,B ∶∶= value type

α type variable

∣ bool boolean type

∣ A →C function type

∣ C ⇒ D handler type

C,D ∶∶=A ! Σ computation type

∀α⃗.A scheme

Σ ∶∶={op1 ∶ A1 → B1, . . . ,opn ∶ An → Bn} effect signature

Θ ∶∶={α1, . . . ,αn} type variable environment

Γ ∶∶=∅ ∣ Γ,x ∶ A monomorphic environment

Ξ ∶∶=∅ ∣ Ξ,x ∶ ∀α⃗.A polymorphic environment

Fig. 3. types and effects

For the third transition, case-split on the possible transitions ⟨c1,s⟩❀ ⟨c′1,s′⟩.
In summary, the HST handler faithfully simulates state. For more details on simulating

state, see Bauer & Pretnar (2014) and Danvy (2006). Therefore, even though our calculus is

pure, it faithfully simulates impure computation. By giving an unrestricted Hindley-Milner

type system to this calculus, we now show that the effects expressible by effect handlers

interact well with polymorphism.

3 Type system

The type and effect system (Figs. 3–4) closely follows Pretnar (2015). It comprises two

kinds of types: values are typed with simple types A, while the types of computations are

additionally annotated with finite sets of operations Σ like in an effect system of Lucassen

& Gifford (1988).

We modify Pretnar’s system in two ways. The first modification is minor. We generalise

the type system to allow for more flexible local operation signatures Σ, where operations

may have different types when handled by different handlers, as in Kammar et al. (2013).

In contrast, Pretnar’s account posits a global assignment of predefined types to the effect

operations, and the effect annotations Σ only list which operations may be present. Local

signatures allow the same operation symbol to appear in disjoint parts of the program with

different types. Local signatures also give the calculus stronger theoretical properties, such

as strong normalisation and simpler denotational semantics, cf. Kammar et al..

The second modification is our main contribution. We incorporate Hindley-Milner poly-

morphism in a standard way, without any value restriction. We indicate these latter modi-

fications by shading in the figures. Amongst these:

• Local effect signatures Σ are finite mappings from operations op to pairs of value

types A, B, whose action we denote by (op ∶ A → B) ∈ Σ. We denote the restriction

of a signature Σ to the set of operations disjoint from a given set ∆ = {opi ∣ 1 ≤ i ≤ n}
by Σ\∆.
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Well-formed value types:

α ∈ Θ

Θ ⊢ α Θ ⊢ bool

Θ ⊢ A Θ ⊢C

Θ ⊢ A →C

Θ ⊢C Θ ⊢ D

Θ ⊢C ⇒ D

Well-formed computation types, schemes, and effect signatures:

Θ ⊢ A Θ ⊢ Σ

Θ ⊢ A !Σ

Θ, α⃗ ⊢ A

Θ ⊢∀α⃗.A

[Θ ⊢ Ai Θ ⊢ Bi]1≤i≤n

Θ ⊢ {op1 ∶ A1 → B1, . . . ,opn ∶ An → Bn}
Well-formed monomorphic and polymorphic contexts:

[Θ ⊢ A](x∶A)∈Γ

Θ ⊢ Γ

[Θ ⊢∀α⃗.A](x∶∀α⃗.A)∈Ξ

Θ ⊢ Ξ

Value judgements Θ;Ξ;Γ ⊢ v ∶ A , assuming Θ ⊢ Ξ,Γ,A:

(x ∶ A) ∈ Γ

Θ;Ξ;Γ ⊢ x ∶ A

(x ∶ ∀α⃗.B) ∈ Ξ [Θ ⊢ Ai]1≤i≤∣α⃗∣
Θ;Ξ;Γ ⊢ x ∶ B[Ai/αi]1≤i≤∣α⃗∣ Θ;Ξ;Γ ⊢ true ∶ bool

Θ;Ξ;Γ ⊢ false ∶ bool

Θ;Ξ;Γ,x ∶ A ⊢ c ∶C

Θ;Ξ;Γ ⊢ fun x ↦ c ∶ A →C

Θ;Ξ;Γ,x ∶ A ⊢ cr ∶ B !Σ
′

[(opi ∶ Ai → Bi) ∈ Σ Θ;Ξ;Γ,x ∶ Ai,k ∶ Bi → B !Σ
′
⊢ ci ∶ B !Σ

′]
1≤i≤n

Σ\{opi ∣ 1 ≤ i ≤ n} ⊆ Σ
′

Θ;Ξ;Γ ⊢ handler {return x ↦ cr,op1(x;k)↦ c1, . . . ,opn(x;k)↦ cn} ∶ A !Σ ⇒ B !Σ
′

Computation judgements Θ;Ξ;Γ ⊢ c ∶ A !Σ , assuming Θ ⊢ Ξ,Γ,A:

Θ;Ξ;Γ ⊢ v ∶ A

Θ;Ξ;Γ ⊢ return v ∶ A !Σ

Θ;Ξ;Γ ⊢ c1 ∶ (∀α⃗.A) !Σ Θ;Ξ,x ∶ ∀α⃗.A;Γ ⊢ c2 ∶ B !Σ

Θ;Ξ;Γ ⊢ do x ← c1 in c2 ∶ B !Σ

(op ∶ Aop → Bop) ∈ Σ Θ;Ξ;Γ ⊢ v ∶ Aop Θ;Ξ;Γ,y ∶ Bop ⊢ c ∶ A !Σ

Θ;Ξ;Γ ⊢ op(v;y.c) ∶ A !Σ

Θ;Ξ;Γ ⊢ v ∶ bool Θ;Ξ;Γ ⊢ c1 ∶C Θ;Ξ;Γ ⊢ c2 ∶C

Θ;Ξ;Γ ⊢ if v then c1 else c2 ∶C

Θ;Ξ;Γ ⊢ v1 ∶ A →C Θ;Ξ;Γ ⊢ v2 ∶ A

Θ;Ξ;Γ ⊢ v1 v2 ∶C

Θ;Ξ;Γ ⊢ v ∶C ⇒ D Θ;Ξ;Γ ⊢ c ∶C

Θ;Ξ;Γ ⊢ with v handle c ∶ D

Scheme judgement Θ;Ξ;Γ ⊢ c ∶ (∀α⃗.A) !Σ , assuming Θ ⊢ Ξ,Γ,(∀α⃗.A),Σ:

Θ, α⃗;Ξ;Γ ⊢ c ∶ A !Σ

Θ;Ξ;Γ ⊢ c ∶ (∀α⃗.A) !Σ
(GEN)

Fig. 4. a polymorphic type and effect system
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• We extend types with type variables α and add type variable environments Θ, which

are just finite sets of type variables.

• We introduce schemes ∀α⃗.A, where α⃗ denotes a finite set of ∣α⃗∣-many type variables

ranged over by αi.

• We introduce kinding judgements Θ ⊢ X to explicitly keep track of the free type

variables in X . The shorthand Θ ⊢ X ,Y,Z stands for the conjunction Θ ⊢ X , Θ ⊢Y ,

and Θ ⊢ Z.

• Typing judgements Θ;Ξ;Γ ⊢ M ∶ X include the standard monomorphic environ-

ments Γ which are a unique assignment of types to variables. We extend those with

type variable environments Θ and polymorphic environments Ξ, which are a unique

assignment of schemes to variables. We assume that no variable can appear in both

Γ and Ξ.
1

These polymorphic variables can be specialised at any type.

• We add scheme judgements whose effect annotation is outside the scope of the

quantifier. The kinding assumption Θ ⊢ Σ ensures that none of the type variables

α⃗ appears in Σ. It is at this point that the decision of the inference algorithm which

type variables α⃗ to generalise over takes effect. Our choice to separate scheme

judgements from type judgements simplifies the let-rule, and makes it very similar

to its standard, monomorphic counterpart.

The remaining kinding and typing rules are standard. Fine-grained call-by-value func-

tions take values and perform computations. An operation invocation is well-typed if the

type assigned to it by the local signature must agree with the type of the given parameter

value v, and with the type of argument the continuation c expects. A handler is well-typed

if the type of result the return clause expects matches with the type of computation the

handler can handle, and each operation clause is well-typed when the parameter type and

continuation type match the local signature the handler can handle. Both clauses can cause

additional effects, and their effect annotation must include these operations, as well as any

effect operations the handler does not explicitly handle, reflecting the fact that our handlers

are forwarding. Thus, the rule also requires the type and effect of both clauses to agree.

The fact that our handlers are deep is reflected by the type of the continuation: the effects

the continuation may cause have already been handled, and so the continuation may cause

effects in the resulting signature and of the resulting return type.

For the given effect system, we then have:

Theorem (Safety). If ⊢ c ∶ A !Σ holds, then either:

(i) c ❀ c
′
for some ⊢ c

′
∶ A !Σ;

(ii) c = return v for some ⊢ v ∶ A; or

(iii) c = op(v;y.c
′) for some (op ∶ Aop → Bop) ∈ Σ, ⊢ v ∶ Aop, and y ∶ Bop ⊢ c

′
∶ A !Σ.

In particular, when Σ =∅, evaluation will not get stuck before returning a value.

Proof

1
This separation into two environments is not strictly necessary, as a monomorphic environment
Γ may be identified with a polymorphic environment where each quantifier ranges over an empty
tuple of type variables. We choose to separate the two to highlight which parts of the language
interact with polymorphism.
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We prove progress and preservation lemmata separately by induction. We formalized
2

the calculus and the safety theorem in the Twelf proof assistant (Pfenning & Schürmann,

1999). Our formalization extends Bauer & Pretnar’s (2014) existing formalization of Eff’s

core calculus with type schemes and polymorphism. The code is compatible with ver-

sion 1.7.1 of Twelf. We summarise the crucial step, namely proving type and effect preser-

vation under the DO-OP transition.

Assume that the reduct in DO-OP is well-typed, and invert its type derivation:

(op ∶ Aop → Bop) ∈ Σ

⋮

Θ, α⃗ ⊢ v ∶ Aop

⋮

Θ, α⃗;y ∶ Bop ⊢ c1 ∶ A !Σ

Θ, α⃗ ⊢ op(v;y.c1) ∶ A!Σ

Θ ⊢ op(v;y.c1) ∶ (∀α⃗.A) !Σ

⋮

Θ;x ∶ ∀α⃗.A ⊢ c2 ∶ B !Σ

Θ ⊢ do x ← op(v;y.c1) in c2 ∶ B !Σ

The GEN rule ensures that none of the type variables in α⃗ appear in Σ. Because Σ includes

op ∶Aop →Bop, none of these variables appear in Aop, and we may strengthen the derivation

of Θ, α⃗ ⊢ v ∶ Aop to a derivation of Θ ⊢ v ∶ Aop. As a consequence, the following derivation

is valid:

(op ∶ Aop → Bop) ∈ Σ

⋮

Θ ⊢ v ∶ Aop

⋮

Θ, α⃗;y ∶ Bop ⊢ c1 ∶ A !Σ

Θ;y ∶ Bop ⊢ c1 ∶ (∀α⃗.A) !Σ

⋮

Θ;x ∶ ∀α⃗.A ⊢ c2 ∶ B !Σ

Θ;y ∶ Bop ⊢ do x ← c1 in c2 ∶ B !Σ

Θ ⊢ op(v;y.do x ← c1 in c2) ∶ B !Σ

Therefore, the reduction in DO-OP preserves both the type and the effect annotation. �

The Safety Theorem is robust under the following standard variations in the calculus:

coarse annotations. We can make the signature Σ global, and only keep track of which

operations are used, as in Pretnar (2015). The types in this global signature cannot use

any type variables. The soundness proof remains essentially unchanged
3
. Due to the lack

of type variables in the global signature, there is no need to impose a side-condition on

the well-formedness of the effect annotation in the GEN rule

It may seem this coarser system is a restriction of our current system, where the type

information for each operation has to agree in all effect annotations, and hence it is

sound by the Safety Theorem. This is not the case. In this coarser system, the signatures

on function types are not annotated with the types of the operations. If those types were

fully written out, they would involve the global signature, leading to potential mutual

recursion between signatures and function types. For example, if we elaborate the global

signature Σ = {op ∶ unit→ (unit→ unit)}, we would get:

Σ = {op ∶ unit→ (unit→ (unit !Σ))}

2
https://github.com/matijapretnar/twelf-eff/tree/val-restriction-local-sig

3
https://github.com/matijapretnar/twelf-eff/tree/val-restriction-global-sig

https://github.com/matijapretnar/twelf-eff/tree/val-restriction-local-sig
https://github.com/matijapretnar/twelf-eff/tree/val-restriction-global-sig
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where left arrow is part of the signature syntax and receives no effect annotation on

the co-domain. This recursion is not a mere formality. The type-and-effect system with

local signatures we have described ensures well-typed terms terminate, cf. Kammar et al.

(2013). When we switch to a global signature, we can use effect operations with higher-

order return types to express well-typed diverging computations. With the above global

signature Σ = {op ∶ unit→ (unit→ unit)}, consider the handler

H ∶= handler {return x ↦ return x,

op( ;k)↦ k(fun ↦ op()())}
In the coarse type system, we can derive the judgement:

⊢ H ∶ (unit !{op})⇒ (unit !∅)
If we handle the simple looking computation ⊢ op()() ∶ unit !{op} with H, we get a

diverging computation:

with H handle op()()❀+
with H handle (fun ↦ op()())()

❀ with H handle op()()
In fact, by a variation on Landin’s (1964) knot, we can express a variant of the Y -

combinator, such that for a function f that is pure, Y f behaves like the fixed-point of f

when invoked on pure arguments.

no annotations. We can remove all the effect annotations Σ from type judgements and fix

a single, global signature Σ. The advantage of having an effect system is the additional

guarantee in clause (iii) of the Safety Theorem, which ensures that any unhandled opera-

tion must appear in Σ. Without annotations, any operation may be called. This system is

a restriction of the coarse variation, where each effect annotation is the entire signature.

Consequently, it is sound.

additional language features. To the calculus with coarse annotations, we can add struc-

tural subtyping and static effect instances (further discussed in Sec. 4.2). The soundness

proof remains essentially unchanged
4

as these modifications are orthogonal to polymor-

phism. Similarly, we can replace deep handlers with shallow ones, as in Kammar et al.

(2013) and Kiselyov et al. (2013). As the changes
5

are again orthogonal to polymor-

phism, we may reasonably assume a similar soundness result to hold for a calculus that

incorporates all of the above: subtyping, instances, and, through two separate syntactic

constructs, both deep and shallow handlers.

4 Expressivity

There is currently no simple type system integrating reference cells with polymorphism

without the value restriction. This non-existence contrasts the simplicity of our type sys-

tem, and calls into question both its degree of feature integration and its expressiveness.

First, we evaluate the degree and smoothness of the interaction between polymorphism and

4
https://github.com/matijapretnar/twelf-eff/tree/val-restriction-instances

5
https://github.com/matijapretnar/twelf-eff/tree/val-restriction-shallow

https://github.com/matijapretnar/twelf-eff/tree/val-restriction-instances
https://github.com/matijapretnar/twelf-eff/tree/val-restriction-shallow
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other features in our calculus. Then, we highlight the difference in expressiveness between

effect handlers and reference cells. As a basis for our evaluation and comparison, we use

Leroy’s (1992) set of example programs for analysing the usefulness of a polymorphic type

system for reference cells.

4.1 Evaluation

Algebraic effects allow us to lace a piece of code with operations in the signature

{get ∶ unit→ α,set ∶ α → unit}
The scheme assigned to the handler HST , which handles them away, is

HST ∶ ∀α,β .α !{get ∶ unit→ β ,set ∶ β → unit}⇒ (β → α !∅) !∅

It takes a computation of type α that interacts with a state of type β , and handles it to a

pure function of type β → α !∅. The rightmost ∅ indicates that no effects can occur when

producing the function.

This handler can handle computations with different types of state, for example:

(with HST handle set ()) ();

(with HST handle get ()) true

We can also use effects in polymorphic code:

do f ← if get () then return fun xy ↦ return x

else return fun xy ↦ return y

in ( f (fun b ↦ return b)
(fun b ↦ set b;return b))
( f true false)

In our call-by-value semantics, if we wrap this computation with the state handler, the

memory look-up in f ’s definition will only occur once.

To demonstrate that the polymorphic, effectful, and high-order features interact well, we

hypothetically extend our calculus with pairs and lists. The hypothesised extension may

include primitives such as the empty list [], a list cons (∶∶) and tail-recursive iteration

foldl, which we expect to interact smoothly with polymorphism. Thus we can use HST to

implement functional features in an imperative style.

do imp map ← fun f xs ↦

with HST handle (foldl (fun x ↦ set( f x ∶∶ get ())
()
xs;

reverse(get ())
[] (∗ initial state ∗) in . . .

The scheme assigned to imp map is

imp map ∶ ∀αβ .(α → β !Σ)→ (α list→ β list !Σ) !∅
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for any Σ. This implementation is imperative in style, but not imperative per se, as all

operations are handled by high-order functions. The function imp map can also be partially

applied and retain its polymorphism, for example, in

do list id ← imp map id in

do nil ← list id [] in . . .

we have the scheme assignments:

list id ∶ ∀α.α list→ α list !∅

nil ∶ ∀α.α list

Most importantly, the following program is well-typed:

do id ← (fun f ↦ f ) (fun x ↦ x) in

do id
′
← id (id) in . . .

and both functions are assigned the polymorphic type ∀α.α → α!Σ. Such mixed-variance

polymorphism is ruled out by all current value restrictions.

4.2 Reference cells

We believe it is impossible to implement full blown reference cells using effect handlers

without other language features. We can increase modularity by introducing instances (Bauer

& Pretnar, 2015, 2014; Pretnar, 2014). These may be thought of as first class atomic

names. With instances, each effect instance ι and an operation symbol op determine an

operation ι#op. In handlers, each operation clause v#op(x;k)↦ c specifies which instance,

dynamically given by the value v, of the statically chosen effect operation symbol op

the handler handles. At runtime, invocations of the same operation op but with different

instances will not be caught by this handler and will be forwarded.

Instances allow us to pass a cell around by passing an instance, but they are still less

expressive than having the ability to allocate arbitrarily many new cells dynamically. For

example, we do not know how to implement even the simplest of Leroy’s (1992) bench-

marks:

do make ref ← fun x ↦ ref x in . . .

We believe it is impossible to encode general references without additional language fea-

tures. Eff provides such a mechanism, which can both generate fresh instances and attach

them to a stateful resource (Bauer & Pretnar, 2015), allowing one to directly implement a

make ref analogue: make ref creates a fresh instances that has get and set operations asso-

ciated with it. Only code that knows what the instance is, can handle these effects. However,

it is not easy to find a corresponding type and effect system for fresh instances (Bauer &

Pretnar, 2014; Pretnar, 2014), let alone a polymorphic one.

As a final example, recall the problematic reference cell example which cannot be

directly expressed in our calculus:

do r ← ref [] in

r ∶= [()];
true ∶∶ !r
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We can express a computation that writes a unit list value and reads a bool list value:

set [()];
true ∶∶ get ()

However, this computation has the effect annotation

{set ∶ unit list→ unit,get ∶ unit→ bool list}
which is incompatible with the type of the state handler HST . Other handlers for the state

operations may have a compatible type. For example, the read-only state handler HRO

which ignores any memory updates:

HRO ∶= handler {return x ↦ fun ↦ return x

get( ;k)↦ fun s ↦ k s s

set( ;k)↦ fun s ↦ k () s}
It has the scheme

HRO ∶ ∀α,β ,γ.α !{get ∶ unit→ β ,set ∶ γ → unit}⇒ (β → α !∅) !∅

and can be applied to the above computation without run-time errors.

4.3 Dynamically scoped state

As we saw in Sec. 2.2, we can simulate global state using the handler HST , and this state

can be handled locally to give a pure computation. While we do not know whether effect

handlers can simulate reference cells or not, we will now characterise the handler HST as

expressing the notion of dynamically scoped state.

In order to explain what we mean by dynamically scoped state, and to make the discus-

sion precise, we consider the calculus presented in Fig. 5. It is a fine-grained call-by-value

variation on the dynamic scope calculi of Kiselyov et al. (2006) and Moreau (1998).

We assume a set of parameters ranged over by p that name dynamically scoped memory

cells. These cells can be dereferenced, !p, or assigned to, p ∶= v, just like ref cells. The

rebinding construct dlet p ← v in c declares that in executing c, all references to p will be

bound to this occurrence of p, and shadow other binding declarations that may be in place.

For example, assuming we have a type of integers the following code will evaluate to

return 2.

do f ← dlet p← 0 in

return (fun ↦

p ∶= 1+!p) in

dlet p← 1 in

f ();

!p

The reason is that the state changes inside the function bind dynamically to the closest

enclosing rebinding, which is the second one.

Fig. 6 describes the (Felleisen-style) operational semantics for this calculus. We kept the

style of semantics as close as possible to Kiselyov et al.’s (2006) to make it clear we use
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Syntax

p ∶∶= p ∣ q ∣ r ∣ . . . parameter

v ∶∶= value

x variable

∣ true ∣ false boolean constants

∣ () unit value

∣ fun x ↦ c function

c ∶∶= computation

return v return

∣ do x ← c1 in c2 sequencing

∣ if v then c1 else c2 conditional

∣ v1 v2 application

∣ !p dereferencing

∣ p ∶= v assignment

∣ dlet p ← v in c rebinding

Fig. 5. a calculus for dynamically scoped state

Auxiliary definitions

Evaluation contexts:

E ∶∶= [ ] ∣ E[do x ← [ ] in c] ∣ E[dlet p ← v in [ ]]
Parameter binding:

bp([ ]) ∶= ∅ bp(E[do x ← [ ] in c]) ∶= bp(E) bp(E[dlet p ← v in [ ]]) ∶= bp(E)∪{p}
Semantics

E[do x ← return v in c] dyn
⟿ E[c[v/x]] E[if true then c1 else c2]

dyn
⟿ E[c1]

E[if false then c1 else c2]
dyn
⟿ E[c2] E[(fun x ↦ c)v] dyn

⟿ E[c[v/x]]

E[dlet p ← v in return v
′] dyn
⟿ E[return v

′]

E[dlet p ← v in E
′[!p]] dyn

⟿ E[dlet p ← v in E
′[return v]]

(p ∉ bp(E
′))

E[dlet p ← v in E
′[p ∶= v

′]] dyn
⟿ E[dlet p ← v

′
in E

′[return ()]]
(p ∉ bp(E

′))

Fig. 6. semantics for dynamically scoped state
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Term-level translation

⌈x⌉ ∶= x ⌈true⌉ ∶= true ⌈false⌉ ∶= false ⌈fun x ↦ c⌉ ∶= fun x ↦ ⌈c⌉
⌈v1 v2⌉ ∶= ⌈v1⌉ ⌈v2⌉ ⌈return v⌉ ∶= return ⌈v⌉ ⌈do x ← c1 in c2⌉ ∶= do x ← ⌈c1⌉ in ⌈c2⌉

⌈!p⌉ ∶= get p() ⌈p ∶= v⌉ ∶= set p(⌈v⌉) ⌈dlet p ← v in c⌉ ∶= (with H
p

ST ⌈c⌉ handle ) ⌈v⌉
where:

H
p

ST ∶= handler {get p( ;k)↦return (fun s ↦ (k s) s)
set p(s

′
;k)↦return (fun ↦ (k ()) s

′)
return x ↦return (fun ↦ return x)}

Fig. 7. handlers expressing dynamically scoped state

the same notion of dynamic scope, and our theoretical treatment closely mirrors their own.

The semantics use the set of parameters bound in a given context E, denoted by bp(E). The

three transitions specific to dynamic scope are shaded. First, a fully evaluated computation

removes a preceding parameter binding, as it will no longer be used. For the other two

transitions, the side condition p ∉ bp(E
′) ensures the uniqueness of the decomposition

into the context E
′

by locating the closest rebinding of p. The semantics of dereferencing

returns the value associated to this closest rebinding, while the semantics of assignment

modifies it. In our design, assignment evaluates to the unit value, deviating from Kiselyov

et al.’s semantics. This purely cosmetic change does not alter the nature of dynamically

scope state we are dealing with, and makes the relationship with HST tighter.

The example above evaluates as follows:

do f ← dlet p← 0 in

return (fun ↦

p ∶= 1+!p) in

dlet p← 1 in

f ();

!p

dyn
⟿

do f ← return (fun ↦

p ∶= 1+!p) in

dlet p← 1 in

f ();

!p

dyn
⟿

dlet p← 1 in

(fun ↦

p ∶= 1+!p) ();

!p

dyn
⟿

dlet p← 1 in

p ∶= 1+!p;

!p

dyn
⟿

+
return 2

Fig. 7 shows how effect handlers express dynamically scoped state. Using Felleisen’s

(1990) terminology, it is a macro translation. First, it does not use any information collected

globally as it is defined homomorphically over the syntax of the language. Second, it keeps

the common core of the two languages unchanged, translating a boolean value to itself, a

function to a function, and so forth. The translation is straightforward: it translates deref-

erencing and assignments to p as specially named effects, get p and set p. Rebinding
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amounts to handling with HST , and passing the translated rebinding value as the initial

value.

This translation simulates dynamic allocation:

Theorem (Simulation). For all c
dyn
⟿ c

′
, we have ⌈c⌉❀+ ⌈c′⌉.

Proof

First, extend the translations to evaluation contexts, and show that ⌈E[c]⌉ = ⌈E⌉[⌈c⌉].
Then, show the translation respects capture avoiding substitution: ⌈c[v/x]⌉ = ⌈c⌉[⌈v⌉/x].
To deal with the mismatch between Felleisen-style and small-step semantics, show that for

all evaluation contexts E, if c
dyn
⟿ c

′
then ⌈E⌉[c]❀+ ⌈E⌉[c′]. It therefore suffices to prove

the theorem for each of the transitions in Fig. 6 specialised to E ∶= [ ].
For each of the common constructs of the two calculi, the proof is immediate, for

example:

⌈do x ← return v in c⌉ = do x ← return ⌈v⌉ in ⌈c⌉❀ ⌈c⌉[⌈v⌉/x] = ⌈c[v/x]⌉
The next remaining transition amounts to handling a terminal computation:

⌈dlet p← v in return v
′⌉ = (with H

p

ST handle return ⌈v′⌉) ⌈v⌉
❀

+ (fun ↦ return ⌈v′⌉) ⌈v⌉❀ return ⌈v′⌉
For the final two transition, show that, for all contexts E, parameters p ∉ bp(E), opera-

tions op that is either get p or set p, and x fresh for E, we have:

⌈E⌉[op(v;x.c)]❀∗
op(v;x.⌈E⌉[c])

And finally, calculate:

⌈dlet p ← v in E[!p]⌉ =(with H
p

ST handle ⌈E⌉[get p(();x.return x)) ⌈v⌉
❀

∗(with H
p

ST handle get p(();x.⌈E⌉[return x])) ⌈v⌉
❀

+(fun s ↦ ((fun x ↦ with H
p

ST handle ⌈E⌉[return x]) s) s) ⌈v⌉
❀

+
with H

p

ST handle ⌈E⌉[return x] ⌈v⌉
=⌈dlet p ← v in E[return v]⌉

A similar calculation for assignment completes the proof. �

This translation, while being straightforward, also preserves the type system. Fig. 8

presents the types for the calculus. The only notable feature is that, like Kiselyov et al., we

assume a global signature assigning to each parameter a type. As the signature is global,

these (monomorphic) types do not contain any type variables.

Fig. 9 presents the kind and (Hindley-Milner polymorphic) type system for the calcu-

lus. The kind system ensures well-kinded signatures assign types without type variables.

Typing judgements Θ;Ξ;Γ ⊢
dyn

Σ
c ∶ A refer to the fixed, ambient, well-kinded parameter

signature Σ. The typing rules specific to dynamically scoped state (shaded) ensure that we

may only dereference, assign to, and rebind a parameter in accordance with the ambient

signature. The assignment rule also highlights our decision to ascribe the unit type to

assignment, in a minor deviation from Kiselyov et al.. The (GEN) rule is now completely



ZU064-05-FPR polymorphic-eff 23 May 2016 18:26

18 O. Kammar and M. Pretnar

Types

A,B ∶∶= value type

α type variable

∣ bool boolean type

∣ unit unit type

∣ A → B function type

∀α⃗.A scheme

Σ ∶∶= {p1 ∶ A1, . . . , pn ∶ An} parameter signature

Θ ∶∶= {α1, . . . ,αn} type variable environment

Γ ∶∶= ∅ ∣ Γ,x ∶ A monomorphic environment

Ξ ∶∶= ∅ ∣ Ξ,x ∶ ∀α⃗.A polymorphic environment

Fig. 8. polymorphic types for dynamically scoped state

unrestricted, ensured by the assumption that the type signature does not involve type vari-

ables.

Fig. 10 extends the translation to types. The parameter signature Σ translates into an

effect signature containing the distinct pair of effects corresponding to this parameter,

namely get p and set p, with the appropriate type. Function types may cause any effect

in this translated signature ⌈Σ⌉. This translation is therefore not-well-defined: if Σ contains

any function types, then ⌈Σ⌉ refers to ⌈A → B⌉, which refers to ⌈Σ⌉ again.

There are at least three ways around this issue. The simplest solution, presented in the

top half of Fig. 10 is to restrict Σ to ground types, i.e., prohibit storing functions.

A less restrictive solution is to use the coarser type system for effect handlers that does

not track effect annotations at all, and define ⌊A → B⌋ ∶= ⌊A⌋→ ⌊B⌋, as in the bottom half

of Fig. 10. This solution works well, as the effects get p and put p maintain their type.

A more sophisticated potential solution is to use equi-recursive effect signatures. At this

point in time, such a type-and-effect system has not been developed, but we do not foresee

any serious obstacles in developing it: its denotational semantics would involve a recursive

domain equation in the same spirit as in Bauer & Pretnar (2014).

The fact that higher-order parameter types merit domain-theoretic semantics is not sur-

prising, as such parameters allow non-terminating programs. We say that a type A is

inhabited if there exists a closed value ⊢
dyn

Σ
v ∶ A.

Proposition. If Σ contains a higher-order type parameter (p ∶ A → B) ∈ Σ for some

inhabited type A, then there is a term c satisfying:

c
dyn
⟿

+
c

Proof

Let ⊢
dyn

Σ
v ∶ A be an inhabitant of A, and take:

c ∶= dletp ← (fun a ↦ (!p)a) in

(!p)v
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Well-formed types, parameter signatures, and schemes:

α ∈ Θ

Θ ⊢
dyn

α Θ ⊢
dyn

bool Θ ⊢
dyn

unit

Θ ⊢
dyn

A Θ ⊢
dyn

C

Θ ⊢
dyn

A →C

[⊢dyn
Ai]1≤i≤n

Θ ⊢
dyn {p1 ∶ A1, . . . , pn ∶ An}

Θ, α⃗ ⊢
dyn

A

Θ ⊢
dyn

∀α⃗.A

Well-formed polymorphic and monomorphic environments:

[Θ ⊢
dyn

∀α⃗.A](x∶∀α⃗.A)∈Ξ

Θ ⊢
dyn

Ξ

[Θ ⊢
dyn

A](x∶A)∈Γ

Θ ⊢
dyn

Γ

Value judgements Θ;Ξ;Γ ⊢
dyn

Σ
v ∶ A , assuming Θ ⊢

dyn
Ξ,Γ,A,Σ:

(x ∶ A) ∈ Γ

Θ;Ξ;Γ ⊢
dyn

Σ
x ∶ A

(x ∶ ∀α⃗.B) ∈ Ξ [Θ ⊢
dyn

Ai]1≤i≤∣α⃗∣
Θ;Ξ;Γ ⊢

dyn

Σ
x ∶ B[Ai/αi]1≤i≤∣α⃗∣ Θ;Ξ;Γ ⊢

dyn

Σ
true ∶ bool

Θ;Ξ;Γ ⊢
dyn

Σ
false ∶ bool Θ;Ξ;Γ ⊢

dyn

Σ
() ∶ unit

Θ;Ξ;Γ,x ∶ A ⊢
dyn

Σ
c ∶ B

Θ;Ξ;Γ ⊢
dyn

Σ
fun x ↦ c ∶ A → B

Computation judgements Θ;Ξ;Γ ⊢
dyn

Σ
c ∶ A , assuming Θ ⊢

dyn

Σ
Ξ,Γ,A,Σ:

Θ;Ξ;Γ ⊢
dyn

Σ
v ∶ A

Θ;Ξ;Γ ⊢
dyn

Σ
return v ∶ A

Θ;Ξ;Γ ⊢
dyn

Σ
c1 ∶ (∀α⃗.A) Θ;Ξ,x ∶ ∀α⃗.A;Γ ⊢

dyn

Σ
c2 ∶ B

Θ;Ξ;Γ ⊢
dyn

Σ
do x ← c1 in c2 ∶ B

Θ;Ξ;Γ ⊢
dyn

Σ
v ∶ bool Θ;Ξ;Γ ⊢

dyn

Σ
c1 ∶C Θ;Ξ;Γ ⊢

dyn

Σ
c2 ∶C

Θ;Ξ;Γ ⊢
dyn

Σ
if v then c1 else c2 ∶C

Θ;Ξ;Γ ⊢
dyn

Σ
v1 ∶ A → B Θ;Ξ;Γ ⊢

dyn

Σ
v2 ∶ A

Θ;Ξ;Γ ⊢
dyn

Σ
v1 v2 ∶ B

(p ∶ A) ∈ Σ

Θ;Ξ;Γ ⊢
dyn

Σ
!p ∶ A

(p ∶ A) ∈ Σ Θ;Ξ;Γ ⊢
dyn

Σ
v ∶ A

Θ;Ξ;Γ ⊢
dyn

Σ
p ∶= v ∶ unit

(p ∶ A) ∈ Σ Θ;Ξ;Γ ⊢
dyn

Σ
v ∶ A Θ;Ξ;Γ ⊢

dyn

Σ
c ∶ B

Θ;Ξ;Γ ⊢
dyn

Σ
dlet p ← v in c ∶ B

Scheme judgement Θ;Ξ;Γ ⊢
dyn

Σ
c ∶ (∀α⃗.A) , assuming Θ ⊢

dyn

Σ
Ξ,Γ,(∀α⃗.A),Σ:

Θ, α⃗;Ξ;Γ ⊢
dyn

Σ
c ∶ A

Θ;Ξ;Γ ⊢
dyn

Σ
c ∶ (∀α⃗.A)

(GEN)

Fig. 9. a polymorphic type system for dynamically scoped state
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Type-level translation with effect annotations

⌈α⌉ ∶= α ⌈bool⌉ ∶= bool ⌈A → B⌉ ∶= ⌈A⌉→ ⌈B⌉ !⌈Σ⌉ ⌈∀α⃗.A⌉ ∶=∀α⃗.⌈A⌉

⌈Θ⌉ ∶= Θ ⌈Γ⌉ ∶= {x ∶ ⌈A⌉ ∣ (x ∶ A) ∈ Γ} ⌈Ξ⌉ ∶= {x ∶ ∀α⃗.⌈A⌉ ∣ (x ∶ ∀α⃗.A) ∈ Γ}

⌈Σ⌉ ∶= {get p ∶ unit→ ⌈A⌉,set p ∶ ⌈A⌉→ unit ∣ (p ∶ A) ∈ Σ}
provided Σ is ground.

Type-level translation without effect annotations

⌊α⌋ ∶= α ⌊bool⌋ ∶= bool ⌊A → B⌋ ∶= ⌊A⌋→ ⌊B⌋ ⌊∀α⃗.A⌋ ∶=∀α⃗.⌊A⌋ ⌊Θ⌋ ∶= Θ

⌊Γ⌋ ∶= {x ∶ ⌊A⌋ ∣ (x ∶ A) ∈ Γ} ⌊Ξ⌋ ∶= {x ∶ ∀α⃗.⌊A⌋ ∣ (x ∶ ∀α⃗.A) ∈ Γ}
for the ambient effect signature:

⌊Σ⌋ ∶= {get p ∶ unit→ ⌊A⌋,set p ∶ ⌊A⌋→ unit ∣ (p ∶ A) ∈ Σ}

Fig. 10. handlers types system expressing dynamically scoped state

Then:

c
dyn
⟿

dletp ← (fun a ↦ (!p)a) in

(fun a ↦ (!p)a)v

dyn
⟿

+ dletp ← (fun a ↦ (!p)a) in

(!p)v
= c

as required. �

Moreover, every parameter (p ∶ A → B) lets us define a form of a fixed-point combinator

Y ∶ ((A → B)→ A → B)→ (A → B) by a variant of Landin’s knot, provided the functions

passed to this combinator and their arguments do not involve p.

The two proposed translations are correct:

Theorem (Type Preservation). For every Θ;Ξ;Γ ⊢
dyn

Σ
c ∶ A and Θ;Ξ;Γ ⊢

dyn

Σ
v ∶ A, we

have:

• If Σ is ground, then ⌈Θ⌉;⌈Ξ⌉;⌈Γ⌉⊢ ⌈c⌉ ∶ ⌈A⌉ !⌈Σ⌉ and ⌈Θ⌉;⌈Ξ⌉;⌈Γ⌉⊢ ⌈v⌉ ∶ ⌈A⌉.
• ⌊Θ⌋;⌊Ξ⌋;⌊Γ⌋⊢ ⌈c⌉ ∶ ⌊A⌋ and ⌊Θ⌋;⌊Ξ⌋;⌊Γ⌋⊢ ⌈v⌉ ∶ ⌊A⌋.

Proof

For the first part only, first show that if A is ground, then ⌈A⌉ = A, and so if Σ is a well-

kinded ground signature, then ⌈Σ⌉ is well-defined and well-kinded.

Then the proofs of both parts follow the same lines. By mutual induction on the kinding

judgements, show that well-kinded types, schemes, and contexts translate into well-kinded

types, schemes, and contexts, respectively. Then show that both translations respect type-

level substitution:

⌈B[Ai/αi]1≤i≤n⌉ = ⌈B⌉[⌈Ai⌉/αi]1≤i≤n

and similarly for the coarse translation.

Finally, by mutual induction on typing judgements for values and computations, and on

scheming judgements, show the hypothesis. We mention only the interesting cases.
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For dereferencing a cell (p ∶ A) ∈ Σ, by the translation’s definition,

(get p ∶ unit→ ⌈A⌉) ∈ ⌈Σ⌉
Use this fact to derive that ⌈!p⌉ has the type ⌈A⌉. Use a similar argument for assignment.

Next, show that for all (p ∶ A) ∈ Σ:

⌈Θ⌉;⌈Ξ⌉;⌈Γ⌉⊢ H
p

ST ∶ (B !⌈Σ⌉)⇒ ((⌈A⌉→ (B !⌈Σ⌉)) !⌈Σ⌉)
and use this fact, together with the induction hypotheses, to give a valid derivation for

⌈dlet p ← v in c⌉. �

In summary, the handler HST expresses dynamically scoped state, in both terms and

types.

5 Conclusion and further work

Unexpectedly, Hindley-Milner polymorphism integrates smoothly and robustly with ex-

isting type and effect systems for algebraic effects and handlers. However, combining

reference cell allocation with polymorphism remains an open problem, as does incorpo-

rating dynamic generation of instances as used in Eff . Consequently, Eff still uses the

value restriction. Our contribution is to identify a larger class of languages in which effects

and polymorphism coexist naturally.

For type-system cognoscenti, these results may not come as a complete surprise. First,

using effect systems to ensure soundness has been proposed (Leroy & Weis, 1991) before

Wright’s value restriction. Second, even if we consider the non-effect-annotated safety

result, we do not believe the type system can encode the problematic effects: local ref-

erence cells and continuations. Nonetheless, previous solutions require a specialised, and

sometimes subtle, type system. In the algebraic setting, adding polymorphism to existing

systems is strikingly natural.

This result arose as part of a broader (denotational) semantic investigation of effects and

polymorphism, which does not yet account for reference cells. We hope that an algebraic

understanding of locality (Staton, 2013; Fiore & Staton, 2014) and scope and polymorphic

arities (Wu et al., 2014) will explain the interaction between reference cells and poly-

morphism. The robustness of type safety leads us to believe standard extensions, such as

type inference, principal types, and impredicative and row polymorphism will not pose

problems. The latter is particularly interesting, as it can serve as an effect system with

effect variables (Lindley & Cheney, 2012; Leijen, 2014; Pretnar, 2014).

We want to investigate the expressive difference between effect handlers and delimited

control, and polymorphism forms another comparison axis. We defer a thorough com-

parison, as there are several notions of delimited control (shift, shift0, with or without

answer-type modification) and several proposals for polymorphic type systems (Asai &

Kameyama, 2007; Gunter et al., 1995; Kiselyov et al., 2006), and as delimited control is

subtle. That said, there are two immediate points of comparison between delimited control

and effect handlers.

First, Kiselyov et al.’s translation of dynamic scope into delimited control requires some

complication in order to preserve the type. This complication is caused by their effect

system for delimited control tracking, the return type of the computation enclosed by the
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nearest rebinding. When an access to a dynamically scoped cell escapes the current binding

in scope the type expected in the nearest rebinding may change, resulting in a type error

of their translated program. The example on page 14 demonstrates such a shift from a

function type to an integer type. In contrast, our effect system only tracks the local type for

each effect operation, and the translation from dynamically scoped state to effect handlers

extends smoothly to types.

Second, these systems include a form of a purity restriction or value restriction. As a

consequence, they cannot type purely functional computations like the final example in the

Evaluation Subsection 4.1. In contrast, the type system proposed here allows unrestricted

Hindley-Milner polymorphism in both purely functional and effectful code.
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