
On Time and Space in Higher Order Boolean Circuits

Damiano Mazza
CNRS, UMR 7030, LIPN, Université Paris 13, Sorbonne Paris Cité

Damiano.Mazza@lipn.univ-paris13.fr

It is well known that the usual complexity measures
of time and space (defined using Turing machines) are
strongly related to size and depth of Boolean circuits.
The size of a circuit is the number of its gates; the
depth is the longest path in the circuit, seen as a di-
rected acyclic graph (from inputs to outputs). Given
a family (Cn)n∈N of Boolean circuits (on the stan-
dard fan-in 2 basis {¬,∧,∨}), such that Cn has n
inputs and 1 output, we say that it decides a lan-
guage L ⊆ {0, 1}∗ if, for all x ∈ {0, 1}n, x ∈ L
iff C|x|(x) = 1. We then denote by SIZE(f) (resp.
DEPTH(f)) the class of languages decided by families
of circuits (Cn)n∈N such that the size (resp. depth)
of Cn is bounded by f(n).

With the above definitions, we have (see [14, 4]):

Theorem 1 (Fisher and Pippenger, Borodin)
1. TIME(f) ⊆ SIZE(O(f log f));
2. SIZE(f) ⊆ TIME(O(f));
3. NSPACE(f) ⊆ DEPTH(O(f2));
4. DEPTH(f) ⊆ SPACE(O(f)).

In (2) and (4), some notion of uniformity on circuit
families must be assumed of course. The details are
irrelevant for our purposes; it suffices to say that a
family is uniform if its circuits may be generated by
a program of small complexity (say, logspace).

Our purpose is to investigate what happens in the
higher order world, which is the preferred setting for
the theory of programming languages. In particular:

(a) TIME(·) and SPACE(·) must be replaced by no-
tions of time and space complexity for λ-terms;

(b) a suitable notion of higher-order Boolean circuit
must be introduced, and the corresponding no-
tions of size and depth defined for it.

For what concerns time, one may resort to the
number of head-reduction steps, which was proved
by Accattoli and Dal Lago [1] to be an invariant cost
measure, i.e., if we denote by λTIME(f) the class of
languages decided (using e.g. Church binary strings
and Church Booleans) by λ-terms in at most f(n)
steps of head reduction for inputs of size n, then:

Theorem 2 (Accattoli and Dal Lago)
1. TIME(f) ⊆ λTIME(O(f));
2. λTIME(f) ⊆ TIME(O(fk)) for some constant k.

The above tells us we have a good notion of time
complexity for λ-terms. When it comes to space com-
plexity, however, much less is known. The ideal would
be to find an abstract measure, something that is as
much as possible machine-independent. Resorting to
notions which are purely internal to the theory of the
λ-calculus should guarantee a good level of abstrac-
tion (counting head-reductions is a perfect example).
The work of Blelloch et al. [16] is a very interesting
proposal, although it still relies on a low-level descrip-
tion of λ-terms, which is not entirely satisfactory from
our point of view.

Let us temporarily ignore the issue and let us
address directly point (b): what is a higher-order
Boolean circuit? We believe that this should be taken
to coincide with linear λ-terms. There are several
reasons for this choice: like Boolean circuits, lin-
ear λ-terms may only compute finite functions; like
Boolean circuits, the (sequential) runtime of a linear
λ-term coincides with its size; finally, Boolean cir-
cuits may be seen as morphisms of a free symmetric
monoidal category (in fact, a PROP), while (normal)
linear λ-terms are morphisms in a free closed sym-
metric monoidal category. In fact, for technical rea-

1

sons it is better to consider affine λ-terms (erasing is
permitted, not duplication), which are a minor vari-
ant still adhering to the above picture.

The relationship between affine λ-terms and gen-
eral λ-terms may be refined by formalizing the intu-
ition (already present in [7]) that the affine λ-calculus
is “dense” in the full λ-calculus. This is the object of
[8], which may be informally summarized as follows:
• there is a notion of affine approximation t @ M

of a λ-term by affine terms t, such that M may
be seen as the limit of its affine approximations;
• reduction is continuous: if M →∗ N , then for all
u @ N there exists t @M such that t→∗ u.

Although this looks like a good start, we immedi-
ately run into trouble: linear-step computations in
the λ-calculus may require exponentially large affine
approximations. In other words, λTIME(f) is not in-
cluded in λSIZE(O(fk)) for any constant k, where we
consider the size of affine terms to be the usual one.
A possible solution, which we started to explore, is
to shift to the parsimonious λ-calculus, introduced by
the author [9, 10, 13]. Another solution is to consider
linear explicit substitutions, as in [1, 2]. In both cases,
we obtain a result corresponding to points 1 and 2 of
Theorem 1. For instance, if pλTIME(f) is the ana-
logue of λTIME(f) for the parsimonious λ-calculus,
we have

Theorem 3 ([12])
1. pλTIME(f) ⊆ λSIZE(O(fk)) for a constant k;
2. λSIZE(f) ⊆ pλTIME(O(f2)).

In ongoing work, we are seeking to complete the
picture by finding the analogue of points 3 and 4 of
Theorem 1, taking the parsimonious λ-calculus as the
underlying language. Our approach is based on an in-
teresting correspondence between intersection types
and affine approximations, described recently by the
author [11]: a λ-term M has an intersection type
iff there exists a simply-typable t such that t @ M .
More precisely, one may build a non-idempotent,
non-commutative intersection type system (equiva-
lent to the standard one for what concerns typabil-
ity) such that its types are isomorphic to the simple
types for affine terms and its derivations are isomor-
phic to simply-typed affine terms and, furthermore,
an affine term corresponding to a type derivation for

M is actually an approximation of M . So, we may
write Γ ` t @ M : A to say that M is typable (in
intersection types) of type A with a derivation iso-
morphic to t (whose simple type is also A). Thanks
to this correspondence, which holds also for the par-
simonious λ-calculus, and the idea, originally due to
Schöpp [15], of using the geometry of interaction to
perform space-efficient computation on λ-terms, we
obtain

Theorem 4 Let M be a parsimonious λ-term s.t.
there exists a directed (w.r.t. the approximation or-
der) sequence (tn)n∈N s.t., for all n ∈ N,

` tn @M : Strn (Bool,

where Strn are (bigger and bigger) instances of the
usual type of binary strings, and let dn be the depth
of Strn (as a syntactic tree). Then, M decides a lan-
guage in SPACE(O(dn log |tn|)).

The above result suggests that, if we take higher-
order Boolean circuits to be affine terms of type
Str[] (Bool (with Str[] some instance of the type
of binary strings), then we should take as “depth”
the depth of the formula Str[]. This is in accord
with what Terui did for Boolean proof nets [17] and
agrees, up to a multiplicative instead of additive fac-
tor, with what Borodin [4] found for Turing machines
and (first-order) Boolean circuits: a uniform family of
circuits of depth dn and size sn decides a language in
SPACE(dn +log sn) (this is how point 4 of Theorem 1
is proved).

Observe that Theorem 4 may allow to bypass
the definition of a space measure for parsimonious
λ-terms: the existence of a family of suitable typ-
ings would constitute per se an abstract, machine-
independent measure. The relationship between in-
tersection types and time complexity of λ-terms was
well known [6, 3, 18, 5]; it is interesting to see that it
may work for space, too. In the talk, we will discuss
and explain more in detail the above results and the
perspectives they offer.

Acknowledgments. Partially supported by Coquas

(ANR-12-JS02-006-01) and Elica (ANR-14-CE25-0005).

2

References

[1] Beniamino Accattoli and Ugo Dal Lago. On the
invariance of the unitary cost model for head
reduction. In Proceedings of RTA, pages 22–37,
2012.

[2] Beniamino Accattoli and Ugo Dal Lago. Beta
reduction is invariant, indeed. In Proceedings of
CSL-LICS, page 8, 2014.

[3] Alexis Bernadet and Stéphane Lengrand. Com-
plexity of strongly normalising lambda-terms via
non-idempotent intersection types. In Proceed-
ings of FOSSACS, pages 88–107, 2011.

[4] Allan Borodin. On relating time and space to
size and depth. SIAM J. Comput., 6(4):733–744,
1977.

[5] Erika De Benedetti and Simona Ronchi
Della Rocca. Bounding normalization time
through intersection types. In Proceedings of
ITRS, pages 48–57, 2013.

[6] Daniel de Carvalho. Execution time of lambda-
terms via denotational semantics and intersec-
tion types. CoRR, abs/0905.4251, 2009.

[7] Jean-Yves Girard. Linear logic. Theor. Comput.
Sci., 50(1):1–102, 1987.

[8] Damiano Mazza. An infinitary affine lambda-
calculus isomorphic to the full lambda-calculus.
In Proceedings of LICS, pages 471–480, 2012.

[9] Damiano Mazza. Non-uniform polytime compu-
tation in the infinitary affine lambda-calculus. In
Proceedings of ICALP, Part II, pages 305–317,
2014.

[10] Damiano Mazza. Simple parsimonious types and
logarithmic space. In Proceedings of CSL, pages
24–40, 2015.

[11] Damiano Mazza. Affine approximations and in-
tersection types. Accepted for presentation at
ITRS 2016. Available on the author’s web page,
2016.

[12] Damiano Mazza. Church meets cook and levin.
To appear in Proceedings of LICS. Available on
the author’s web page, 2016.

[13] Damiano Mazza and Kazushige Terui. Parsimo-
nious types and non-uniform computation. In
Proceedings of ICALP, Part II, pages 350–361,
2015.

[14] Nicholas Pippenger and Michael J. Fischer. Re-
lations among complexity measures. J. ACM,
26(2):361–381, 1979.

[15] Ulrich Schöpp. Space-efficient computation by
interaction. In Proceedings of CSL, pages 606–
621, 2006.

[16] Daniel Spoonhower, Guy E. Blelloch, Robert
Harper, and Phillip B. Gibbons. Space profil-
ing for parallel functional programs. J. Funct.
Program., 20(5-6):417–461, 2008.

[17] Kazushige Terui. Proof nets and boolean cir-
cuits. In Proceedings of LICS, pages 182–191,
2004.

[18] Kazushige Terui. Semantic evaluation, inter-
section types and complexity of simply typed
lambda calculus. In Proceedings of RTA, pages
323–338, 2012.

3

